unit cell there is a normal octahedral $\mathrm{Ni}(3)$ mononuclear complex containing a methanol molecule and a water molecule forming a cis octahedral structure.

From the crystal data and the analytical values mentioned above the crystals obtained in this work contain one binuclear [(acac)(tmen) $\mathrm{Ni}\left(\mathrm{CO}_{3}\right) \mathrm{Ni}$ (tmen)(acac)] and one octahedral mononuclear unit $\left[\mathrm{Ni}(\mathrm{acac})(\right.$ tmen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \mathrm{BPh}_{4}$ in the same unit cell. There is little reported literature of carbonate existing as a bidentate bridging ligand and of two different structural units occupying the same unit cell, although the crystal of this material was obtained quite accidentally. It is interesting to note that the mononuclear cation in the present crystal has an octahedral arrangement with BPh_{4} as the counterion. Recently, we have solved the structure of an $\mathrm{Ni}^{\mathrm{II}}$ complex containing tmen and acac which forms an octahedral cation with ClO_{4} as counterion,
[$\mathrm{Ni}($ acac $)($ tmen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \mathrm{ClO}_{4}$, and a squareplanar one with $\mathrm{BPh}_{4},[\mathrm{Ni}(\mathrm{acac})($ tmen $)] \mathrm{BPh}_{4}$.

References

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., German, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mikuriya, M., Murase, I., Asato, E. \& Kida, S. (1989). Chem. Lett. pp. 497-500.
Murase, I., Vuckovic, G., Kodera, M., Harada, h., Matsumoto, N. \& Kida, S. (1991). Inorg. Chem. 30, 728-733.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Yamada, K., Hori, K. \& Fukuda, Y. (1992). Inorg. Chim. Acta. Submitted.

Acta Cryst. (1993). C49, 448-451

Structure of Acridinium trans-Tetrachlorobis(dimethyl sulfoxide)ruthenate(III)

By Mario Calligaris, Nevina Bresciani-Pahor and Radhey S. Srivastava*
Dipartimento di Scienze Chimiche, Università di Trieste, 34127, Trieste, Italy

(Received 27 February 1992; accepted 2 July 1992)

Abstract

Acridinium (OC-6-11)-Tetrachlorobis(dimethyl sulfoxide)ruthenate(III), $\quad\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}\right]\left[\mathrm{RuCl}_{4}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right], \quad M_{r}=579.38$, monoclinic, $P 2_{1} / c, a=$ 10.536 (1), $\quad b=13.372$ (1), $\quad c=16.619$ (1) $\AA, \quad \beta=$ $102.25(1)^{\circ}, \quad V=2288.1(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.682 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $13.3 \mathrm{~cm}^{-1}, F(000)=1164, T=294 \mathrm{~K}, R=0.031, w R$ $=0.038$ for 4321 unique observed reflections. The structure of the anion is characterized by a trans arrangement of the two sulfur-bonded dimethyl sulfoxide ligands. Average bond distances are $\mathrm{Ru}-\mathrm{Cl} 2.349$ (8) and $\mathrm{Ru}-\mathrm{S} 2.35$ (1) \AA.

Introduction. In the course of a general study on halide-dimethyl sulfoxide (dmso) ruthenium complexes (Alessio et al., 1991), mer- RuCl_{3} (dmso) ${ }_{3}$ was treated with acridine (acr), in an attempt to introduce this ligand into the coordination sphere of $\mathrm{Ru}^{\text {III }}$. 2.27 mmol of acridine, dissolved in 5 ml of CHCl_{3}, were added to a solution of 0.27 mmol of

^[* On leave from the Department of Chemistry, M.G. Degree College, Gorakhpur, India.]

0108-2701/93/030448-04\$06.00
mer $-\mathrm{RuCl}_{3}(\mathrm{dmso})_{3}$ in 10 ml of CHCl_{3}. After 1 h of stirring at room temperature, a light-green solution was obtained, which was filtered and concentrated to half of its original volume. After addition of a small amount of diethyl ether a yellow precipitate was obtained within 24 h at 277 K . This precipitate was filtered off, washed with cold ethanol and vacuum dried. The complex was recrystallized at room temperature from dichloromethane/diethyl ether to give reddish brown crystals (yield 60%).

X-ray analysis of the product showed that acridine did not coordinate to the metal atom and the structure was determined to be acridinium tetrachlorobis(dimethyl sulfoxide)ruthenate(III) [(acr)H]$\left[\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]$. The overall reaction between $m e r-\mathrm{RuCl}_{3}(\mathrm{dmso})_{3}$ and acridine in chloroform is the addition of one mole of hydrogen chloride and elimination of one dmso molecule.

The results are of interest in view of the small amount of structural data available on $\mathrm{Ru}^{\mathrm{III}}-$ dmso complexes. They provide accurate $\mathrm{Ru}{ }^{\text {III }}-\mathrm{Cl}$ bond distances comparable to those of $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]-$ $\left[\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]$, the first fully characterized $\mathrm{Ru}^{\mathrm{III}}$
chloride-dmso complex (Alessio et al., 1991; Jaswal, Rettig \& James, 1990). In fact, in the latter complex, the Cl atoms of one of the two crystallographically independent molecules could not be located with great accuracy because of either thermal motion (Alessio et al., 1991) or statistical occupancy disorder effects (Jaswal et al., 1990).

Experimental. Crystal dimensions approximately 0.3 $\times 0.4 \times 0.5 \mathrm{~mm}$. Weissenberg and precession photographs indicated crystals to be monoclinic. EnrafNonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$ radiation. Lattice parameters refined by least-squares fit of 25 reflections in the range $14<\theta<18^{\circ}$. Intensity data measured by the $\omega / 2 \theta$ technique, ω-scan angle $=(0.70+0.35 \tan \theta)^{\circ}$; ω-scan rate, $1-10^{\circ} \mathrm{min}^{-1}$. Three standard reflections, monitored every 83 min , showed no decay. 7129 reflections collected ($2 \leq \theta \leq 30^{\circ} ;-14 \leq h \leq 14,0 \leq$ $k \leq 18,0 \leq l \leq 23)$, 4321 significant $\left[F_{o} \geq 3.0 \sigma\left(F_{o}\right)\right.$]; $\sigma\left(F_{o}\right)$ based on counting statistics. Empirical absorption correction applied to data using ψ scans of four reflections at $\theta>15^{\circ}$ (correction factors in the range $0.93-1.00$, average transmission factor 0.97). Lorentz and polarization corrections. Structure solved using the heavy-atom method. H atoms located at idealized positions on the basis of ideal bond lengths ($\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H} 0.95 \AA$) and angles and not included in the least-squares refinement; $B=1.3 B_{\text {eq }}$ of the corresponding bonded C or N atom. Refinement using full-matrix least-squares method with anisotropic thermal factors for non- H atoms led to $R=$ $0.031, w R=0.038, S=1.10,(\Delta / \sigma)_{\text {max }}=0.48$. Function minimized: $\sum_{i} w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, w=4 F_{o}^{2} /\left[\sigma^{2}(I)+\right.$ $\left.\left(0.04 F_{o}\right)^{2}\right]$. Maximum residual $\Delta \rho 0.49(8)$ e \AA^{-3}. Atomic scattering factors, anomalous-dispersion terms and programs as in MolEN (Enraf-Nonius, 1990). All computations carried out on a MicroVAX 2000 computer.

Discussion. Final fractional coordinates and equivalent isotropic thermal parameters of non- H atoms are given in Table 1* and bond lengths and angles in Table 2. The structure of the title complex is shown in Fig. 1. It consists of $[(\mathrm{acr}) \mathrm{H}]^{+}$cations hydrogen bonded to the O atom $[\mathrm{N} \cdots \mathrm{O}(1) 2.768$ (3) \AA; $\mathrm{O}(1) \cdots \mathrm{H}-\mathrm{N} 160^{\circ}$] of one of the two dmso molecules of the $\left[\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]^{-}$anion.

Bond lengths and angles of the acridinium ion are very close to those previously reported for 9 -(chloromethyl)acridine hydrochloride (Zacharias \& Glusker,

[^1]Table 1. Final fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with their e.s.d.'s in parentheses

$\begin{gathered} B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right. \\ +a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)] . \end{gathered}$				
	x	y	z	$B_{\text {eq }}$
Ru	0.15082 (2)	0.15436 (2)	0.17267 (1)	2.070 (4)
$\mathrm{Cl}(1)$	0.1011 (1)	0.23113 (7)	0.04211 (5)	3.78 (2)
$\mathrm{Cl}(2)$	-0.05514 (8)	0.07799 (6)	0.14131 (6)	3.28 (2)
$\mathrm{Cl}(3)$	0.19305 (9)	0.07381 (6)	0.30076 (5)	3.31 (2)
$\mathrm{Cl}(4)$	0.35409 (8)	0.23296 (7)	0.20007 (6)	3.74 (2)
S(1)	0.25273 (8)	0.01805 (6)	0.12248 (5)	2.58 (1)
S(2)	0.06514 (7)	0.28923 (6)	0.23289 (5)	2.45 (1)
O(1)	0.3672 (2)	-0.0241 (2)	0.1787 (2)	4.11 (6)
O(2)	-0.0679 (2)	0.2828 (2)	0.2463 (2)	4.38 (6)
N	0.4965 (3)	-0.0375 (2)	0.3418 (2)	2.86 (5)
C(1)	0.3034 (4)	0.0474 (3)	0.0302 (2)	4.63 (9)
C(2)	0.1471 (4)	-0.0837 (3)	0.0907 (3)	4.18 (8)
C(3)	0.0769 (4)	0.4011 (3)	0.1792 (3)	4.31 (9)
C(4)	0.1652 (4)	0.3193 (3)	0.3289 (2)	4.75 (9)
C(5)	0.4679 (3)	-0.1063 (2)	0.3952 (2)	2.68 (6)
C(6)	0.3513 (3)	-0.1616 (3)	0.3762 (2)	3.62 (7)
C(7)	0.3269 (4)	-0.2305 (3)	0.4312 (3)	4.50 (9)
C(8)	0.4135 (4)	-0.2452 (3)	0.5067 (3)	4.8 (1)
C(9)	0.5248 (4)	-0.1927 (3)	0.5268 (2)	4.03 (8)
C(10)	0.5571 (3)	-0.1217 (3)	0.4715 (2)	2.89 (6)
C(11)	0.6701 (3)	-0.0653 (3)	0.4874 (2)	3.08 (7)
C(12)	0.6972 (3)	0.0050 (3)	0.4323 (2)	2.82 (6)
C(13)	0.8123 (4)	0.0640 (3)	0.4458 (2)	3.89 (8)
C(14)	0.8343 (4)	0.1284 (3)	0.3879 (3)	4.43 (9)
C(15)	0.7443 (4)	0.1382 (3)	0.3130 (3)	4.68 (9)
C(16)	0.6323 (4)	0.0855 (3)	0.2969 (2)	3.91 (8)
C(17)	0.6066 (3)	0.0173 (3)	0.3565 (2)	2.86 (6)

1974), as well as to those of 9 -acridineethanol (Toma, Ray, Stowell \& Byrn, 1990). The cation is planar within 0.059 (7) \AA and roughly parallel [dihedral angle 6.1 (3) ${ }^{\circ}$] to the RuCl_{4} coordination plane [planar within 0.013 (2) \AA]. The whole molecule approaches C_{s} symmetry [after interchange of $\mathrm{O}(2)$ and $C(4)$]. The approximate mirror plane passes through $\mathrm{N}, \mathrm{Cl}(1)$ and the two $\mathrm{Ru}-\mathrm{S}$ bonds, bisecting the $\mathrm{C}(11)-\mathrm{Ru}-\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)-\mathrm{Ru}-\mathrm{Cl}(4)$ bond angles.

The hydrogen-bonding interaction between one dmso ligand and $[(\mathrm{acr}) \mathrm{H}]^{+}$causes significant distortions in the Ru anion. In fact, the $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(1)$ [92.29 (3) ${ }^{\circ}$] and $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(2)$ [93.09 (3) ${ }^{\circ}$] bond angles are wider than the $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(3)$ [87.31 (3) ${ }^{\circ}$] and $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(4)$ [87.10 (3) ${ }^{\circ}$] angles, with a resulting $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(2)$ bond angle of $174.82(3)^{\circ}$ and slightly different $\mathrm{Ru}-\mathrm{S}$ bond lengths. Analogously, the $\mathrm{Ru}-\mathrm{Cl}(1)$ and $\mathrm{Ru}-\mathrm{Cl}(2)$ bond distances [average 2.356 (2) \AA] are longer than $\mathrm{Ru}-\mathrm{Cl}(3)$ and $\mathrm{Ru}-\mathrm{Cl}(4)$ [average 2.3423 (4) \AA]. The $\mathrm{Ru}-\mathrm{Cl}$ bond distances [average 2.349 (8) \AA] are close to the average value of 2.347 (8) \AA, found in the well defined molecule of $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]-$ $\left[\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]$ (Jaswal et al., 1990; Alessio et al., 1991) as well as in $[($ tmso $) \mathrm{H}]\left[\mathrm{Ru}(\text { tmso })_{2} \mathrm{Cl}_{4}\right]$ (tmso $=$ tetramethylene sulfoxide) (Alessio et al., 1990). Furthermore, they compare well to the average values of 2.347 (1), 2.344 (8) and 2.346 (6) \AA found

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\left[\mathrm{RuCl}_{4}(\mathrm{dmso})_{2}\right]^{-}$		$[(\mathrm{acr}) \mathrm{H}]^{+}$	
$\mathrm{Ru}-\mathrm{Cl}(1)$	2.3567 (9)	$\mathrm{N}-\mathrm{C}(5) \quad 1.35$	1.357 (4)
$\mathrm{Ru}-\mathrm{Cl}(2)$	2.3545 (8)	$\mathrm{N}-\mathrm{C}(17) \quad 1.3$	1.350 (4)
$\mathrm{Ru}-\mathrm{Cl}(3)$	2.3426 (8)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.411 (5)
$\mathrm{Ru}-\mathrm{Cl}(4)$	2.3421 (9)	$\mathrm{C}(5)-\mathrm{C}(10) \quad 1.4$	1.424 (4)
$\mathrm{Ru}-\mathrm{S}(1)$	2.3560 (9)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.3$	1.361 (7)
$\mathrm{Ru}-\mathrm{S}(2)$	2.3350 (8)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.401 (6)
$\mathrm{S}(1)-\mathrm{O}(1)$	1.472 (2)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.3$	1.346 (6)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.771 (4)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.413 (5)
$\mathrm{S}(1)-\mathrm{C}(2)$	1.766 (4)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.3$	1.386 (5)
$\mathrm{S}(2)-\mathrm{O}(2)$	1.467 (3)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.3$	1.384 (5)
$\mathrm{S}(2)-\mathrm{C}(3)$	1.760 (4)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.4$	1.424 (5)
$\mathrm{S}(2)-\mathrm{C}(4)$	1.762 (4)	$\mathrm{C}(12)-\mathrm{C}(17) \quad 1.4$	1.419 (4)
		$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.3$	1.348 (6)
		$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.4$	1.402 (6)
		$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.3$	1.352 (6)
		$\mathrm{C}(16)-\mathrm{C}(17) \quad 1.4$	1.414 (5)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(2)$	88.32 (3)	$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(17)$	123.5 (3)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(3)$	177.71 (3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	120.8 (3)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(4)$	89.94 (3)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(10)$	119.0 (3)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{S}(1)$	92.29 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.0 (3)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{S}(2)$	91.58 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	121.1 (4)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{Cl}(3)$	89.44 (3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.1 (4)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{Cl}(4)$	178.26 (3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.5 (4)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{S}(1)$	93.09 (3)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	118.1 (3)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{S}(2)$	90.45 (3)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	118.0 (3)
$\mathrm{Cl}(3)-\mathrm{Ru}-\mathrm{Cl}(4)$	92.30 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	123.9 (3)
$\mathrm{Cl}(3)-\mathrm{Ru}-\mathrm{S}(1)$	87.31 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 122.1.(3)
$\mathrm{Cl}(3)-\mathrm{Ru}-\mathrm{S}(2)$	88.96 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 124.1 (3)
$\mathrm{Cl}(4)-\mathrm{Ru}-\mathrm{S}(1)$	87.10 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$) 118.2 (3)
$\mathrm{Cl}(4)-\mathrm{Ru}-\mathrm{S}(2)$	89.47 (3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$) 117.7 (3)
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(2)$	174.82 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 120.7 (3)
$\mathrm{Ru}-\mathrm{S} 1-\mathrm{O}(1)$	116.4 (1)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) 120.6 (4)
$\mathrm{Ru}-\mathrm{S}(1)-\mathrm{C}(1)$	112.3 (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$) 121.6 (4)
$\mathrm{Ru}-\mathrm{S}(1)-\mathrm{C}(2)$	113.3 (2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$) $\quad 119.2$ (3)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	106.1 (2)	$\mathrm{N}-\mathrm{C}(17)-\mathrm{C}(12)$	119.2 (3)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	105.9 (2)	$\mathrm{N}-\mathrm{C}(17)-\mathrm{C}(16)$	120.5 (3)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	101.4 (2)	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$) 120.3 (3)
$\mathrm{Ru}-\mathrm{S}(2)-\mathrm{O}(2)$	119.2 (1)		
$\mathrm{Ru}-\mathrm{S}(2)-\mathrm{C}(3)$	111.3 (2)		
$\mathrm{Ru}-\mathrm{S}(2)-\mathrm{C}(4)$	110.7 (2)		
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(3)$	107.4 (2)		
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(4)$	106.4 (2)		
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{C}(4)$	99.9 (2)		

for the trans $\mathrm{Cl}-\mathrm{Ru}^{\mathrm{III}}-\mathrm{Cl}$ group in mer$\left[\mathrm{RuCl}_{3}(\mathrm{dmso})_{3}\right]$ (Alessio et al., 1991), mer$\left[\mathrm{RuCl}_{3}(\mathrm{dms})_{3}(\mathrm{dms}=\right.$ dimethyl sulfide) (Jaswal et al., 1990) and [(im) H$]\left[\right.$ trans $\left.-\mathrm{Ru}(\mathrm{im})_{2} \mathrm{Cl}_{4}\right]$ (im = imidazole) (Keppler, Rupp, Juhl, Endres, Niebl \& Balzer, 1987), respectively. Longer values have been found in $[(4-\mathrm{Meim}) \mathrm{H}]\left[\right.$ trans $\left.-\mathrm{Ru}(4-\mathrm{Meim})_{2} \mathrm{Cl}_{4}\right]$, average 2.364 (4) \AA, (Keppler, Rupp et al., 1987) and in $[(\mathrm{im}) \mathrm{H}]_{2}\left[\right.$ trans $\left.-\mathrm{Ru}(\mathrm{im}) \mathrm{Cl}_{5}\right]$, average 2.37 (1) \AA (Keppler, Wehe, Endres \& Rupp, 1987). The bond lengthening in these compounds could be due to a greater electron density on the metal atom, which should weaken the $\mathrm{Ru}-\mathrm{Cl}$ bonds.

Neglecting the bond distances of the last two compounds, the average $\mathrm{Ru}^{\mathrm{III}}-\mathrm{Cl}$, trans to Cl , bond length is 2.347 (6) \AA, lengthening to 2.35 (1) \AA if all values are considered. This confirms the previous observations (Jaswal et al., 1990; Alessio et al., 1990, 1991), that the $\mathrm{Ru}^{\mathrm{III}}-\mathrm{Cl}$ distance is markedly shorter than the $\mathrm{Ru}^{\mathrm{II}}-\mathrm{Cl}$ distance, such as found in trans $-\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right] \quad[2.402(2) \AA$ (Alessio et al.,
1988), 2.432 (1) $\AA($ Jaswal et al., 1990)], trans,cis,cis$\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad[2.408$ (7) $\AA \quad$ (Henn, Alessio, Mestroni, Calligaris \& Attia, 1991)], trans,trans, trans $-\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{2}(\mathrm{im})_{2}\right] \quad[2.414$ (1) \AA (Keppler, 1991)] and trans-[$\left.\mathrm{RuCl}_{2}(1,5 \text {-dtco-o })_{2}\right]$ (1,5-dtco-o $=1,5$-dithiacyclooctane 1 -oxide) [2.413 (4) \AA (Arbuckle, Bharadwaj \& Musker, 1991)].
The $\mathrm{Ru}^{1 \mathrm{II}}-\mathrm{Cl}$, trans to Cl , bond distances average 2.413 (11) \AA, giving an average shortening of 0.06 (2) \AA, from $\mathrm{Ru}^{\text {II }}$ to $\mathrm{Ru}^{\text {III }}$ species. A difference of $0.09 \AA$ is found for the $\mathrm{Ru}-\mathrm{Cl}$, trans to S , bond distances, comparing $\mathrm{Ru}^{\mathrm{II}}$-dms and $\mathrm{Ru}^{\mathrm{II}}$-sulfoxide complexes: e.g. 2.3417 (8) \AA in $m e r-\left[\mathrm{RuCl}_{3}(\mathrm{dms})_{3}\right]$ (Jaswal et al., 1990), 2.427 (4) \AA in cis- $\left[\mathrm{RuCl}_{2}(\text { tmso })_{4}\right]$ (Alessio et al., 1990) and 2.428 (11) \AA in different $\mathrm{Ru}^{\mathrm{II}}$-dmso complexes (Alessio et al., 1988). The greater difference can be explained in terms of a lower trans influence of dms with respect to the dmso and tmso ligands.
A shortening of 0.040 (6) \AA has been reported for other $\mathrm{Ru}\left(t_{2 g}\right)^{6}-\left(t_{2 g}\right)^{5}$ couples and has been attributed to the electrostatic effect of the greater positive charge on Ru^{3+} atoms (Stynes \& Ibers, 1971). The $\mathrm{Ru}^{\mathrm{II}}-\mathrm{S}$, trans to S , bond distances of 2.3350 (8) and 2.3560 (9) \AA [average 2.35 (1) \AA] compare well to the average values of 2.348 (1) and 2.33 (1) \AA found in the $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]^{+}$and $[(\mathrm{tmso}) \mathrm{H}]^{+}$analogues, respectively. It is interesting to observe that they do not show any appreciable reduction with respect to those found in trans S—RuII-S groups: e.g. 2.360 (1) in trans- $\left[\mathrm{RuBr}_{2}\right.$ (dmso) $\left.{ }_{4}\right]$ (Oliver \& Riley, 1984), 2.352 (2) \AA (Alessio et al., 1988) and 2.3534 (9) \AA (Jaswal et al., 1990) in trans- $\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right]$ and 2.355 (6) \AA in cis- $\left[\mathrm{RuCl}_{2}\right.$ (tmso) $\left.{ }_{4}\right]$ (Alessio et al., 1990).

The different trends in the $\mathrm{Ru}-\mathrm{Cl}$ and $\mathrm{Ru}-\mathrm{S}$ bond distances, passing from $\mathrm{Ru}^{\text {II }}$ to $\mathrm{Ru}^{\mathrm{III}}$, have been interpreted (Alessio et al., 1990, 1991) in terms of a strong reduction of π back bonding in the $\mathrm{Ru}^{\mathrm{III}}-\mathrm{S}$ (dmso) bonds, assumed to be present in the $\mathrm{Ru}^{\mathrm{II}}$ complexes. Thus, the reduction of the bond

Fig. 1. ORTEP (Johnson, 1976) drawing and atom-numbering scheme for $[(\mathrm{acr}) \mathrm{H}]\left[\right.$ trans $\left.-\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]$. Only the H^{+}atom of the acridinium ion, bonded to $\mathrm{O}(1)$, is shown.
length, passing from the +2 to the +3 oxidation state, would be counterbalanced by the decrease in the $\mathrm{Ru}-\mathrm{S}$ bond order.

On the other hand, if the $\mathrm{Ru}^{\text {III }}-\mathrm{S}$ bonding has a prevailing σ character, this would induce a positive charge on the S atom and thereby would increase the $p \pi-d \pi$ overlap between oxygen and sulfur orbitals, with a consequent increase in the $\mathrm{S}=\mathrm{O}$ bond order (Davies, 1981) and decrease of the $\mathrm{S}-\mathrm{O}$ bond lengths. In fact, the $\mathrm{S}(2)-\mathrm{O}(2)$ bond length of 1.467 (3) \AA, comparable to those of 1.467 (5) \AA in the $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]^{+}$analogue and 1.465 (4) \AA in the tmso derivative, appears to be shorter than the $\mathrm{S}-\mathrm{O}$ bond lengths in $\mathrm{Ru}^{11} \mathrm{~S}$-bonded dmso complexes, which average 1.48 (1) \AA (Alessio et al., 1988), as has already been indicated. The $\mathrm{S}(1)-\mathrm{O}(1)$ bond distance of 1.472 (2) \AA is slightly longer, owing to hydrogen-bonding effects, as also found in the tmso derivative $[1.488$ (2) \AA] (Alessio et al., 1990).

The strengthening of the $\mathrm{S}-\mathrm{O}$ bond in $\mathrm{Ru}^{\mathrm{III}}$ complexes is clearly shown by the higher $\nu(\mathrm{S}=\mathrm{O})$ stretching frequencies, e.g. $1129 \mathrm{~cm}^{-1}$ in $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]-$ $\left[\mathrm{Ru}(\mathrm{dmso})_{2} \mathrm{Cl}_{4}\right]$ versus $1089 \mathrm{~cm}^{-1}$ in trans$\left[\mathrm{RuCl}_{2}(\mathrm{dmso})_{4}\right]$ (Alessio et al., 1988).

We thank the MURST (Rome) for financial support.

References

Alessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, W. M. \& Mestroni, G. (1991). Inorg. Chem. 30, 609-618.

Alessio, E., Mestroni, G., Nardin, G., Attia, W. M., Calligaris, M., Sava, G. \& Zorzet, S. (1988). Inorg. Chem. 27, 4099-4106.
Alessio, E., Milani, B., Mestroni, G., Calligaris, M., Faleschini, P. \& Attia, W. M. (1990). Inorg. Chim. Acta, 177, 255-265.
Arbuckle, B. W., Bharadwaj, P. K. \& Musker, W. K. (1991). Inorg. Chem. 30, 440-445.
Davies, J. A. (1981). Adv. Inorg. Chem. Radiochem. 24, 115-187.
Enraf-Nonius. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Henn, M., Alessio, E., Mestroni, G., Calligaris, M. \& Attia, W. M. (1991). Inorg. Chim. Acta, 187, 39-50.

Jaswal, J. S., Rettig, S. J. \& James, B. R. (1990). Can. J. Chem. 68, 1808-1817.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keppler, B. K. (1991). Personal communication.
Keppler, B. K., Rupp, W., Juhl, U. M., Endres, H., Niebl, R. \& Balzer, W. (1987). Inorg. Chem. 26, 4366-4370.
Keppler, B. K., Wehe, D., Endres, H. \& Rupp, W. (1987). Inorg. Chem. 26, 844-846.
Oliver, J. D. \& Ruley, D. P. (1984). Inorg. Chem. 23, 156-158.
Stynes, H. C. \& Ibers, J. A. (1971). Inorg. Chem. 10, 2304-2308.
Toma, P. H., Ray, K. A., Stowell, J. G. \& Byrn, S. R. (1990). Acta Cryst. C46, 1573-1575.
Zacharias, D. E. \& Glusker, J. P. (1974). Acta Cryst. B30, 2046-2049.

Acta Cryst. (1993). C49, 451-453

Structure of Dichloro(2-pyrimidinol- $\kappa N, O$)mercury(II)

By Miguel Quirós* and Carmen Enrique
Departmento de Química Incrgánica, Universidad de Granada, 18071-Granada, Spain

(Received 28 February 1992; accepted 7 July 1992)

Abstract

HgCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}\right)\right], \quad M_{r}=367.6\), monoclinic, $\quad P 2_{1} / c, \quad a=10.506(3), \quad b=4.187(1), \quad c=$ 17.337 (12) $\AA, \beta=92.97$ (7) ${ }^{\circ}, V=761.6$ (6) $\AA^{3}, Z=$ $4, D_{x}=3.206 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мо $K \alpha)=0.71069 \AA, \mu=$ $20.848 \mathrm{~mm}^{-1}, F(000)=656, T=295 \mathrm{~K}$, final $R=$ 0.059 for 1704 unique observed reflections. The Hg atom is coordinated by the two Cl and one N atom and the carbonyl O atom of 2-pyrimidinol, forming a four-membered chelate ring. A hydrogen bond $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and the weak interaction of Cl atoms with neighbouring Hg atoms results in a ladder-like structure along the b axis.

[^2]Introduction. Metal complexes of pyrimidine derivatives have, for a long time, been widely studied, especially pyrimidines that play an important role in biochemistry (Beauchamp \& Simard, 1984). Surprisingly enough, we have found very few references to 2-pyrimidinol (Goodgame \& Jeeves, 1979), despite the fact that it is one of the simplest of the family, the only crystal structure report being of a copper(II) complex (Cartwright, Reynolds \& Skapski, 1977). As part of our work on the coordination chemistry of pyrimidines (Romero, Salas, Simard, Quirós \& Beauchamp, 1990), we report here the synthesis and crystal structure of the compound obtained by the reaction of mercury oxide with 2-pyrimidinol hydrochloride.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55572 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

